The Decidability of Verification under PS 2.0

Author:

Abdulla Parosh Aziz,Atig Mohamed Faouzi,Godbole Adwait,Krishna S.,Vafeiadis Viktor

Abstract

AbstractWe consider the reachability problem for finite-state multi-threaded programs under the promising semantics () of Lee et al., which captures most common program transformations. Since reachability is already known to be undecidable in the fragment of with only release-acquire accesses (-), we consider the fragment with only relaxed accesses and promises (). We show that reachability under is undecidable in general and that it becomes decidable, albeit non-primitive recursive, if we bound the number of promises.Given these results, we consider a bounded version of the reachability problem. To this end, we bound both the number of promises and of “view-switches”, i.e., the number of times the processes may switch their local views of the global memory. We provide a code-to-code translation from an input program under (with relaxed and release-acquire memory accesses along with promises) to a program under SC, thereby reducing the bounded reachability problem under to the bounded context-switching problem under SC. We have implemented a tool and tested it on a set of benchmarks, demonstrating that typical bugs in programs can be found with a small bound.

Publisher

Springer International Publishing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Verification under Intel-x86 with Persistency;Proceedings of the ACM on Programming Languages;2024-06-20

2. Decidable Verification under Localized Release-Acquire Concurrency;Lecture Notes in Computer Science;2024

3. Static Analysis of Memory Models for SMT Encodings;Proceedings of the ACM on Programming Languages;2023-10-16

4. Putting Weak Memory in Order via a Promising Intermediate Representation;Proceedings of the ACM on Programming Languages;2023-06-06

5. Overcoming Memory Weakness with Unified Fairness;Computer Aided Verification;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3