Munsell Color Specification using ARCA (Automatic Recognition of Color for Archaeology)

Author:

Milotta Filippo L. M.1ORCID,Stanco Filippo2,Tanasi Davide3,Gueli Anna M.2

Affiliation:

1. University of Catania, Italy and University of South Florida, Tampa, FL, USA

2. University of Catania, Catania, Sicily, Italy

3. University of South Florida, Tampa, FL, USA

Abstract

Munsell Soil Charts are a very common tool used by archaeologists for the color specification task. Charts are usually employed directly on cultural heritage sites to identify color of soils and collected artifacts. However, charts are designed to be used specifying the color through subjective perception of users, by visual mean, in a time-consuming and error-prone procedure. It is likely that two users may estimate different Munsell notations for the same specimen, as colors are not perceived uniformly by different people. Hence, estimation process should be repeated several times and by more than a single expert user to be considered reliable. In this work, we employ our framework, Automatic Recognition of Color for Archaeology (ARCA), specifically designed to provide a method for objective, deterministic, fast, and automatic Munsell estimation. ARCA is a valuable asset for archaeologists as it provides the definition of a smooth pipeline for an affordable Munsell notation estimation: image acquisition of specimens with general purpose digital cameras in an uncontrolled environment, manual sampling of specimen images in the ARCA desktop application, automatic Munsell color specification, and report generation. We further assess our method with improved color tolerance validations and evaluations, introducing a comparison between Δ E 00 , Δ E 76 , Δ L *, Δ a *, and Δ b * differences. One of the main contributions of this article is the extension of our former dataset ARCA108. We gathered two additional sets of images obtaining a new dataset consisting of pictures of Munsell Soil Charts Editions 2000 and 2009 plus images from a real test case with 16 pottery shards. The new dataset counts 56,160 samples and 328 images, so it has been called ARCA328. Experimental results are reported to investigate which could be the best configuration to be used in the acquisition phase.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Reference42 articles.

1. Quantification of soil features using digital image processing (DIP) techniques

2. BabelColor. 2017. PatchTool Software. Retrieved from http://www.babelcolor.com/products.htm#PRODUCTS_PT. BabelColor. 2017. PatchTool Software. Retrieved from http://www.babelcolor.com/products.htm#PRODUCTS_PT.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3