The Transformation of RGB Images to Munsell Soil-Color Charts

Author:

Solís MartínORCID,Muñoz-Alvarado ErickORCID,Pegalajar María CarmenORCID

Abstract

[Objective] The transformation from RGB to Munsell color space is a relevant issue for different tasks, such as the identification of soil taxonomy, organic materials, rock materials, skin types, among others. This research aims to develop alternatives based on feedforward networks and the convolutional neural networks to predict the hue, value, and chroma in the Munsell soil-color charts (MSCCs) from RGB images. [Methodology] We used images of Munsell soil-color charts from 2000 and 2009 versions taken from Millota et al. (2018) to train and test the models. A division of 2856 images in 10% for testing, 20% for validation, and 70% for training was used to build the models. [Results] The best approach was the convolutional neural networks for classification with 93% of total accuracy of hue, value, and chroma combination; it comprises three CNN, one for the hue prediction, another for value prediction, and the last one for chroma prediction. However, the three best models show closeness between the prediction and real values according to the CIEDE2000 distance. The cases classified incorrectly with this approach had a CIEDE2000 average of 0.27 and a standard deviation of 1.06. [Conclusions] The models demonstrated better color recognition in uncontrolled environments than the Transformation of Centore, which is the classical method to transform from RGB to HVC. The results were promising, but the model should be tested with real images at different applications, such as soil real images, to classify the soil color.

Publisher

Universidad Nacional de Costa Rica

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Social Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Mathematics,General Chemistry,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3