Optimization of 3D Digital Microfluidic Biochips for the Multiplexed Polymerase Chain Reaction

Author:

Li Zipeng1,Ho Tsung-Yi2,Chakrabarty Krishnendu1

Affiliation:

1. Duke University, Durham, NC

2. National Chiao Tung University, Hsinchu, Taiwan

Abstract

A digital microfluidic biochip (DMFB) is an attractive technology platform for revolutionizing immunoassays, clinical diagnostics, drug discovery, DNA sequencing, and other laboratory procedures in biochemistry. In most of these applications, real-time polymerase chain reaction (PCR) is an indispensable step for amplifying specific DNA segments. To reduce the reaction time to meet the requirement of “real-time” applications, multiplexed PCR is widely utilized. In recent years, three-dimensional (3D) DMFBs that integrate photodetectors (i.e., cyberphysical DMFBs) have been developed, which offer the benefits of smaller size, higher sensitivity, and faster result generations. However, current DMFB design methods target optimization in only two dimensions, thus ignoring the 3D two-layer structure of a DMFB. Furthermore, these techniques ignore practical constraints related to the interference between on-chip device pairs, the performance-critical PCR thermal loop, and the physical size of devices. Moreover, some practical issues in real scenarios are not stressed (e.g., the avoidance of the cross-contamination for multiplexed PCR). In this article, we describe an optimization solution for a 3D DMFB and present a three-stage algorithm to realize a compact 3D PCR chip layout, which includes: (i) PCR thermal-loop optimization, (ii) 3D global placement based on Strong-Push-Weak-Pull (SPWP) model, and (iii) constraint-aware legalization. To avoid cross-contamination between different DNA samples, we also propose a Minimum-Cost-Maximum-Flow-based (MCMF-based) method for reservoir assignment. Simulation results for four laboratory protocols demonstrate that the proposed approach is effective for the design and optimization of a 3D chip for multiplexed real-time PCR.

Funder

Taiwan Ministry of Science and Technology

US National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3