Groute

Author:

Ben-Nun Tal1,Sutton Michael2,Pai Sreepathi3,Pingali Keshav4

Affiliation:

1. ETH Zurich, Zürich, Switzerland

2. The Hebrew University of Jerusalem, Jerusalem, Israel

3. University of Rochester, Rochester, NY, USA

4. The University of Texas at Austin, Austin, TX, USA

Abstract

Nodes with multiple GPUs are becoming the platform of choice for high-performance computing. However, most applications are written using bulk-synchronous programming models, which may not be optimal for irregular algorithms that benefit from low-latency, asynchronous communication. This article proposes constructs for asynchronous multi-GPU programming and describes their implementation in a thin runtime environment called Groute. Groute also implements common collective operations and distributed work-lists, enabling the development of irregular applications without substantial programming effort. We demonstrate that this approach achieves state-of-the-art performance and exhibits strong scaling for a suite of irregular applications on eight-GPU and heterogeneous systems, yielding over 7× speedup for some algorithms.

Funder

Deutsche Forschungsgemeinschaft

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Reference45 articles.

1. Groute Authors. 2017. Groute Runtime Environment Source Code. Retrieved from https://www.github.com/groute/groute. Groute Authors. 2017. Groute Runtime Environment Source Code. Retrieved from https://www.github.com/groute/groute.

2. Karlsruhe Institute of Technology. 2014. OSM Europe Graph. Retrieved from http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php. Karlsruhe Institute of Technology. 2014. OSM Europe Graph. Retrieved from http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php.

3. Andrew Adinetz. 2014. Optimized filtering with warp-aggregated atomics. Retrieved from http://devblogs.nvidia.com/parallelfor all/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/. Andrew Adinetz. 2014. Optimized filtering with warp-aggregated atomics. Retrieved from http://devblogs.nvidia.com/parallelfor all/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/.

4. Graph Partitioning and Graph Clustering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3