Single‐ and multi‐GPU computing on NVIDIA‐ and AMD‐based server platforms for solidification modeling application

Author:

Halbiniak Kamil1ORCID,Meyer Norbert2,Rojek Krzysztof1ORCID

Affiliation:

1. Department of Computer Science Czestochowa University of Technology Czestochowa Poland

2. Poznan Supercomputing and Networking Center Poznan Poland

Abstract

SummaryThis work explores the performance of single‐ and multi‐GPU computing on state‐of‐the‐art NVIDIA‐ and AMD‐based server‐class hardware using various programming interfaces to accelerate a real‐world scientific application for solidification modeling based on the phase‐field method. The main computations of this memory‐bound application correspond to 20 stencils computed across grid nodes. We investigate the application's scalability for two basic schemes of organizing computation: without and with hiding data transfers behind computation, combined with using either peer‐to‐peer inter‐GPU data transfers through NVIDIA NVLink and AMD Infinity interconnects or communication over the PCIe and main memory. Among the studied programming interfaces is CUDA, HIP, and OpenMP Accelerator Model. While the first two are designed to write the codes for a specific hardware platform, OpenMP enables code portability between NVIDIA and AMD GPUs. The resulting performance is experimentally assessed on computing platforms containing NVIDIA V100 (up to 8 GPUs) and A100 (one GPU), as well as AMD MI210 (one device) and MI250 (up to 8 logical GPUs).

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Reference59 articles.

1. AllalenV CodreanuM Llieva‐LitovaN GrayA SjöströmA VeinbergV.Best Practice Guide–GPGPU.2017.https://prace‐ri.eu/training‐support/best‐practice‐guides/best‐practice‐guide‐gpgpu/

2. Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect

3. BispoJ.Best Practice Guide Modern Accelerators.2021.https://prace‐ri.eu/training‐support/best‐practice‐guides/modern‐accelerators/

4. NVIDIA DGX‐1.With Tesla V100 System Architecture.2014.https://images.nvidia.com/content/pdf/dgx1‐v100‐system‐architecture‐whitepaper.pdf

5. KarpM.Large‐Scale Direct Numerical Simulations of Turbulence Using GPUs and Modern Fortran. arXiv:2207.07098v1.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3