AUKE

Author:

Debrunner Thomas1ORCID,Saeedi Sajad1ORCID,Kelly Paul H. J.1ORCID

Affiliation:

1. Imperial College London, UK

Abstract

Focal-plane Sensor-Processor Arrays (FPSPs) are new imaging devices with parallel Single Instruction Multiple Data (SIMD) computational capabilities built into every pixel. Compared to traditional imaging devices, FPSPs allow for massive pixel-parallel execution of image processing algorithms. This enables the application of certain algorithms at extreme frame rates (>10,000 frames per second). By performing some early-stage processing in-situ, systems incorporating FPSPs can consume less power compared to conventional approaches using standard digital cameras. In this article, we explore code generation for an FPSP whose 256 × 256 processors operate on analogue signal data, leading to further opportunities for power reduction—and additional code synthesis challenges. While rudimentary image processing algorithms have been demonstrated on FPSPs before, progress with higher-level computer vision algorithms has been sparse due to the unique architecture and limits of the devices. This article presents a code generator for convolution filters for the SCAMP-5 FPSP, with applications in many high-level tasks such as convolutional neural networks, pose estimation, and so on. The SCAMP-5 FPSP has no effective multiply operator. Convolutions have to be implemented through sequences of more primitive operations such as additions, subtractions, and multiplications/divisions by two. We present a code generation algorithm to optimise convolutions by identifying common factors in the different weights and by determining an optimised pattern of pixel-to-pixel data movements to exploit them. We present evaluation in terms of both speed and energy consumption for a suite of well-known convolution filters. Furthermore, an application of the method is shown by the implementation of a Viola-Jones face detection algorithm.

Funder

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3