High-frame rate homography and visual odometry by tracking binary features from the focal plane

Author:

Murai Riku,Saeedi Sajad,Kelly Paul H. J.

Abstract

AbstractRobotics faces a long-standing obstacle in which the speed of the vision system’s scene understanding is insufficient, impeding the robot’s ability to perform agile tasks. Consequently, robots must often rely on interpolation and extrapolation of the vision data to accomplish tasks in a timely and effective manner. One of the primary reasons for these delays is the analog-to-digital conversion that occurs on a per-pixel basis across the image sensor, along with the transfer of pixel-intensity information to the host device. This results in significant delays and power consumption in modern visual processing pipelines. The SCAMP-5—a general-purpose Focal-plane Sensor-processor array (FPSP)—used in this research performs computations in the analog domain prior to analog-to-digital conversion. By extracting features from the image on the focal plane, the amount of data that needs to be digitised and transferred is reduced. This allows for a high frame rate and low energy consumption for the SCAMP-5. The focus of our work is on localising the camera within the scene, which is crucial for scene understanding and for any downstream robotics tasks. We present a localisation system that utilise the FPSP in two parts. First, a 6-DoF odometry system is introduced, which efficiently estimates its position against a known marker at over 400 FPS. Second, our work is extended to implement BIT-VO—6-DoF visual odometry system which operates under an unknown natural environment at 300 FPS.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Inertial Odometry using Focal Plane Binary Features (BIT-VIO);2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Artificial intelligence-based spatio-temporal vision sensors: applications and prospects;Frontiers in Materials;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3