Multi-level texture caching for 3D graphics hardware

Author:

Cox Michael1,Bhandari Narendra2,Shantz Michael2

Affiliation:

1. MRJ/NASA Ames Research Center, Moffett Field, CA and Intel Microcomputer Research Labs, 2200 Mission College Blvd., Santa Clara, CA

2. Intel Microcomputer Research Labs, 2200 Mission College Blvd., Santa Clara, CA

Abstract

Traditional graphics hardware architectures implement what we call the push architecture for texture mapping. Local memory is dedicated to the accelerator for fast local retrieval of texture during rasterization, and the application is responsible for managing this memory. The push architecture has a bandwidth advantage, but disadvantages of limited texture capacity, escalation of accelerator memory requirements (and therefore cost), and poor memory utilization. The push architecture also requires the programmer to solve the bin- packing problem of managing accelerator memory each frame. More recently graphics hardware on PC-class machines has moved to an implementation of what we call the pull architecture. Texture is stored in system memory and downloaded by the accelerator as needed. The pull architecture has advantages of texture capacity, stems the escalation of accelerator memory requirements, and has good memory utilization. It also frees the programmer from accelerator texture memory management. However, the pull architecture suffers escalating requirements for bandwidth from main memory to the accelerator. In this paper we propose multi-level texture caching to provide the accelerator with the bandwidth advantages of the push architecture combined with the capacity advantages of the pull architecture. We have studied the feasibility of 2-level caching and found the following: (1) significant re-use of texture between frames; (2) L2 caching requires significantly less memory than the push architecture; (3) L2 caching requires significantly less bandwidth from host memory than the pull architecture; (4) L2 caching enables implementation of smaller L1 caches that would otherwise bandwidth-limit accelerators on the workloads in this paper. Results suggest that an L2 cache achieves the original advantage of the pull architecture --- stemming the growth of local texture memory --- while at the same time stemming the current explosion in demand for texture bandwidth between host memory and the accelerator.

Publisher

Association for Computing Machinery (ACM)

Reference31 articles.

1. Reality Engine graphics

2. Texture and reflection in computer generated images

3. The truth about texture mapping

4. E. Catmull "'A Subdivision Algorithm for Computer Display of Curved Surfaces " Ph.D. dissertation University of Utah 1974. E. Catmull "'A Subdivision Algorithm for Computer Display of Curved Surfaces " Ph.D. dissertation University of Utah 1974.

5. F. Crow "The Aliasing Problem in Computer Synthesized Shaded Images " Ph.D. dissertation University of Utah 1976. F. Crow "The Aliasing Problem in Computer Synthesized Shaded Images " Ph.D. dissertation University of Utah 1976.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3