We Know What You Want: An Advertising Strategy Recommender System for Online Advertising
Author:
Affiliation:
1. Shanghai Jiao Tong University, Shanghai, China
2. Alibaba Group, Beijing, China
3. Shanghai Jiao Tong University & Nanjing University, Shanghai, China
Funder
Shanghai Science and Technology fund
Science and Technology Innovation 2030
China NSF grant
Alibaba Group
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3447548.3467175
Reference42 articles.
1. Justin Basilico and Thomas Hofmann. 2004. Unifying collaborative and content-based filtering. In ICML. 9. Justin Basilico and Thomas Hofmann. 2004. Unifying collaborative and content-based filtering. In ICML. 9.
2. Charles Blundell Julien Cornebise Koray Kavukcuoglu and Daan Wierstra. 2015. Weight uncertainty in neural networks. In ICML. 1613--1622. Charles Blundell Julien Cornebise Koray Kavukcuoglu and Daan Wierstra. 2015. Weight uncertainty in neural networks. In ICML. 1613--1622.
3. Han Cai Kan Ren Weinan Zhang Kleanthis Malialis Jun Wang Yong Yu and Defeng Guo. 2017. Real-time bidding by reinforcement learning in display advertising. In WSDM. 661--670. Han Cai Kan Ren Weinan Zhang Kleanthis Malialis Jun Wang Yong Yu and Defeng Guo. 2017. Real-time bidding by reinforcement learning in display advertising. In WSDM. 661--670.
4. Heng-Tze Cheng Levent Koc Jeremiah Harmsen Tal Shaked Tushar Chandra Hrishi Aradhye Glen Anderson Greg Corrado Wei Chai Mustafa Ispir etal 2016. Wide & deep learning for recommender systems. In DLRS. 7--10. Heng-Tze Cheng Levent Koc Jeremiah Harmsen Tal Shaked Tushar Chandra Hrishi Aradhye Glen Anderson Greg Corrado Wei Chai Mustafa Ispir et al. 2016. Wide & deep learning for recommender systems. In DLRS. 7--10.
5. Paul Covington Jay Adams and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In RecSys. 191--198. Paul Covington Jay Adams and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In RecSys. 191--198.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Spending Programmed Bidding: Privacy-friendly Bid Optimization with ROI Constraint in Online Advertising;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
2. Economic recommender systems – a systematic review;Electronic Commerce Research and Applications;2024-01
3. A Survey on Bid Optimization in Real-Time Bidding Display Advertising;ACM Transactions on Knowledge Discovery from Data;2023-12-09
4. Contextual Advertising Strategy Generation via Attention and Interaction Guidance;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09
5. A systematic review of value-aware recommender systems;Expert Systems with Applications;2023-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3