The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems
Author:
Affiliation:
1. Department of Algebra, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
Funder
Grantová Agentura České Republiky
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/2933575.2934544
Reference30 articles.
1. THE CONSTRAINT SATISFACTION PROBLEM AND UNIVERSAL ALGEBRA
2. Absorbing subalgebras, cyclic terms and the constraint satisfaction problem;Barto L.;Logical Methods in Computer Science,2012
3. The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell)
4. L. Barto J. Opršal and M. Pinsker. The wonderland of reflections. Preprint arXiv:1510.04521 2015. L. Barto J. Opršal and M. Pinsker. The wonderland of reflections. Preprint arXiv:1510.04521 2015.
5. On the Structure of Abstract Algebras
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Smooth approximations: An algebraic approach to CSPs over finitely bounded homogeneous structures;Journal of the ACM;2024-08-17
2. ON THE ZARISKI TOPOLOGY ON ENDOMORPHISM MONOIDS OF OMEGA-CATEGORICAL STRUCTURES;The Journal of Symbolic Logic;2023-10-31
3. QCSP Monsters and the Demise of the Chen Conjecture;Journal of the ACM;2022-10-28
4. General Lower Bounds and Improved Algorithms for Infinite–Domain CSPs;Algorithmica;2022-08-11
5. Smooth approximations and CSPs over finitely bounded homogeneous structures;Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science;2022-08-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3