General Lower Bounds and Improved Algorithms for Infinite–Domain CSPs

Author:

Jonsson Peter,Lagerkvist Victor

Abstract

AbstractWe study the fine-grained complexity of NP-complete, infinite-domain constraint satisfaction problems (CSPs) parameterised by a set of first-order definable relations (with equality). Such CSPs are of central importance since they form a subclass of any infinite-domain CSP parameterised by a set of first-order definable relations over a relational structure (possibly containing more than just equality). We prove that under the randomised exponential-time hypothesis it is not possible to find $$c > 1$$ c > 1 such that a CSP over an arbitrary finite equality language is solvable in $$O(c^n)$$ O ( c n ) time (n is the number of variables). Stronger lower bounds are possible for infinite equality languages where we rule out the existence of $$2^{o(n \log n)}$$ 2 o ( n log n ) time algorithms; a lower bound which also extends to satisfiability modulo theories solving for an arbitrary background theory. Despite these lower bounds we prove that for each $$c > 1$$ c > 1 there exists an NP-hard equality CSP solvable in $$O(c^n)$$ O ( c n ) time. Lower bounds like these immediately ask for closely matching upper bounds, and we prove that a CSP over a finite equality language is always solvable in $$O(c^n)$$ O ( c n ) time for a fixed c, and manage to extend this algorithm to the much broader class of CSPs where constraints are formed by first-order formulas over a unary structure.

Funder

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,General Computer Science

Reference41 articles.

1. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)

2. Barto, L., Pinsker, M.: The algebraic dichotomy conjecture for infinite domain constraint satisfaction problems. In: Proceedings of 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-2016) (2016)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Bodirsky, M.: Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press, Cambridge (2021)

5. Bodirsky, M., Bodor, B.: Canonical polymorphisms of Ramsey structures and the unique interpolation property. In: Proceedings of 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS-2021), pp. 1–13 (2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3