Spike-Time-Dependent Encoding for Neuromorphic Processors

Author:

Zhao Chenyuan1,Wysocki Bryant T.2,Liu Yifang3,Thiem Clare D.2,McDonald Nathan R.2,Yi Yang4

Affiliation:

1. University of Kansas

2. Air Force Research Laboratory

3. Google Inc.

4. University of Kansa

Abstract

This article presents our research towards developing novel and fundamental methodologies for data representation using spike-timing-dependent encoding. Time encoding efficiently maps a signal's amplitude information into a spike time sequence that represents the input data and offers perfect recovery for band-limited stimuli. In this article, we pattern the neural activities across multiple timescales and encode the sensory information using time-dependent temporal scales. The spike encoding methodologies for autonomous classification of time-series signatures are explored using near-chaotic reservoir computing. The proposed spiking neuron is compact, low power, and robust. A hardware implementation of these results is expected to produce an agile hardware implementation of time encoding as a signal conditioner for dynamical neural processor designs.

Funder

AFRL, under AFRL

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference77 articles.

1. Lapicque’s introduction of the integrate-and-fire model neuron (1907)

2. P. E. Allen and D. R. Holberg. 2002. CMOS Analog Circuit Design. Oxford University Press. P. E. Allen and D. R. Holberg. 2002. CMOS Analog Circuit Design. Oxford University Press.

3. Silicon-neuron design: A dynamical systems approach;Arthur J. V.;IEEE Trans. Circ. Syst.,2011

4. A subthreshold mos neuron circuit based on the volterra system

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator;ACM Journal on Emerging Technologies in Computing Systems;2024-01-19

2. Spiking Neural Encoding Schemes and STDP Training Algorithms for Edge Computing;Proceedings of the Eighth ACM/IEEE Symposium on Edge Computing;2023-12-06

3. Spiking Neural Encoding and Hardware Implementations for Neuromorphic Computing;Neuromorphic Computing;2023-11-15

4. Encoding integers and rationals on neuromorphic computers using virtual neuron;Scientific Reports;2023-07-06

5. Knowledge Distillation between DNN and SNN for Intelligent Sensing Systems on Loihi Chip;2023 24th International Symposium on Quality Electronic Design (ISQED);2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3