Encoding integers and rationals on neuromorphic computers using virtual neuron

Author:

Date Prasanna,Kulkarni Shruti,Young Aaron,Schuman Catherine,Potok Thomas,Vetter Jeffrey

Abstract

AbstractNeuromorphic computers emulate the human brain while being extremely power efficient for computing tasks. In fact, they are poised to be critical for energy-efficient computing in the future. Neuromorphic computers are primarily used in spiking neural network–based machine learning applications. However, they are known to be Turing-complete, and in theory can perform all general-purpose computation. One of the biggest bottlenecks in realizing general-purpose computations on neuromorphic computers today is the inability to efficiently encode data on the neuromorphic computers. To fully realize the potential of neuromorphic computers for energy-efficient general-purpose computing, efficient mechanisms must be devised for encoding numbers. Current encoding mechanisms (e.g., binning, rate-based encoding, and time-based encoding) have limited applicability and are not suited for general-purpose computation. In this paper, we present the virtual neuron abstraction as a mechanism for encoding and adding integers and rational numbers by using spiking neural network primitives. We evaluate the performance of the virtual neuron on physical and simulated neuromorphic hardware. We estimate that the virtual neuron could perform an addition operation using just 23 nJ of energy on average with a mixed-signal, memristor-based neuromorphic processor. We also demonstrate the utility of the virtual neuron by using it in some of the μ-recursive functions, which are the building blocks of general-purpose computation.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials;The International Journal of High Performance Computing Applications;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3