Unpaired Self-supervised Learning for Industrial Cyber-Manufacturing Spectrum Blind Deconvolution

Author:

Deng Lizhen1ORCID,Xu Guoxia1ORCID,Pi Jiaqi2ORCID,Zhu Hu2ORCID,Zhou Xiaokang3ORCID

Affiliation:

1. National Engineering Research Center of Communication and Network Technology, Nanjing University of Posts and Telecommunications, China

2. Jiangsu Province Key Lab on Image Processing and Image Communication, Nanjing University of Posts and Telecommunications, China

3. Faculty of Data Science, Shiga University, Japan, and RIKEN Center for Advanced Intelligence Project, Japan

Abstract

Cyber-Manufacturing combines industrial big data with intelligent analysis to find and understand the intangible problems in decision-making, which requires a systematic method to deal with rich signal data. With the development of spectral detection and photoelectric imaging technology, spectral blind deconvolution has achieved remarkable results. However, spectral processing is limited by one-dimensional signal, and there is no available structural information with few training samples. Moreover, in the majority of practical applications, it is entirely feasible to gather unpaired spectrum dataset for training. This training method of unpaired learning is practical and valuable. Therefore, a two-stage deconvolution scheme combining self supervised learning and feature extraction is proposed in this paper, which generates two complementary paired sets through self supervised learning to extract the final deconvolution network. In addition, a new deconvolution network is designed for feature extraction. The spectrum is pre-trained through spectral feature extraction and noise estimation network to improve the training efficiency and meet the assumed noise characteristics. Experimental results show that this method is effective in dealing with different types of synthetic noise.

Funder

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Point cloud self-supervised learning for machining feature recognition;Journal of Manufacturing Systems;2024-12

2. SST: Sparse self-attention transformer for infrared spectrum deconvolution;Infrared Physics & Technology;2024-08

3. Infrared Spectral Deconvolution Algorithm Based on Masked Pre-training Transformer;Proceedings of the International Conference on Computer Vision and Deep Learning;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3