Adaptive progressive photon mapping

Author:

Kaplanyan Anton S.1,Dachsbacher Carsten1

Affiliation:

1. Karlsruhe Institute of Technology, Germany

Abstract

This article introduces a novel locally adaptive progressive photon mapping technique which optimally balances noise and bias in rendered images to minimize the overall error. It is the result of an analysis of the radiance estimation in progressive photon mapping. As a first step, we establish a connection to the field of recursive estimation and regression in statistics and derive the optimal estimation parameters for the asymptotic convergence of existing approaches. Next, we show how to reformulate photon mapping as a spatial regression in the measurement equation of light transport. This reformulation allows us to derive a novel data-driven bandwidth selection technique for estimating a pixel's measurement. The proposed technique possesses attractive convergence properties with finite numbers of samples, which is important for progressive rendering, and it also provides better results for quasi-converged images. Our results show the practical benefits of using our adaptive method.

Funder

Intel Corporation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Path Termination for Radiance Caching Through Explicit Variance Trading;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

2. Photon-Driven Manifold Sampling;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

3. Gradient Estimation for Progressive Photon Mapping;Journal of the Korea Computer Graphics Society;2024-07

4. USING A FEDERATED APPROACH TO SYNTHESISE IMAGES OF CONFIDENTIAL SCENE MODELS;LIGHT ENG;2024

5. THE TREE SPECIES CLASSIFYING POSSIBILITIES RESEARCH IN THE SPECTRAL RANGE (0.4-1.0) μm;LIGHT ENG;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3