Affiliation:
1. Karlsruhe Institute of Technology, Germany
Abstract
This article introduces a novel
locally adaptive
progressive photon mapping technique which optimally balances noise and bias in rendered images to minimize the overall error. It is the result of an analysis of the radiance estimation in progressive photon mapping. As a first step, we establish a connection to the field of recursive estimation and regression in statistics and derive the optimal estimation parameters for the asymptotic convergence of existing approaches. Next, we show how to reformulate photon mapping as a spatial regression in the measurement equation of light transport. This reformulation allows us to derive a novel data-driven bandwidth selection technique for estimating a pixel's measurement. The proposed technique possesses attractive convergence properties with finite numbers of samples, which is important for progressive rendering, and it also provides better results for quasi-converged images. Our results show the practical benefits of using our adaptive method.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献