A progressive error estimation framework for photon density estimation

Author:

Hachisuka Toshiya1,Jarosz Wojciech2,Jensen Henrik Wann1

Affiliation:

1. UC San Diego

2. Disney Research Zürich and UC San Diego

Abstract

We present an error estimation framework for progressive photon mapping. Although estimating rendering error has been established for unbiased rendering algorithms, error estimation for biased rendering algorithms has not been investigated well in comparison. We characterize the error by the sum of a bias estimate and a stochastic noise bound, which is motivated by stochastic error bounds formulation in biased methods. As a part of our error computation, we extend progressive photon mapping to operate with smooth kernels. This enables the calculation of illumination gradients with arbitrary accuracy, which we use to progressively compute the local bias in the radiance estimate. We also show how variance can be computed in progressive photon mapping, which is used to estimate the error due to noise. As an example application, we show how our error estimation can be used to compute images with a given error threshold. For this example application, our framework only requires the error threshold and a confidence level to automatically terminate rendering. Our results demonstrate how our error estimation framework works well in realistic synthetic scenes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference26 articles.

1. Confidence Intervals for Kernel Density Estimation

2. Sequential Confidence Intervals Based on Rank Tests

3. Glassner A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann. Glassner A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann.

4. Stochastic progressive photon mapping

5. Progressive photon mapping

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical Error Estimation for Denoised Monte Carlo Image Synthesis;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Gradient Estimation for Progressive Photon Mapping;Journal of the Korea Computer Graphics Society;2024-07

3. A Fast Light Baking System for Mobile VR Game Based on Edge Computing Framework;Proceedings of the 2021 ACM International Conference on Intelligent Computing and its Emerging Applications;2021-12-28

4. Consistent Post‐Reconstruction for Progressive Photon Mapping;Computer Graphics Forum;2021-10

5. Correlation‐Aware Multiple Importance Sampling for Bidirectional Rendering Algorithms;Computer Graphics Forum;2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3