Tight Sum-of-Squares lower bounds for binary polynomial optimization problems

Author:

Kurpisz Adam1,Leppänen Samuli2,Mastrolilli Monaldo3

Affiliation:

1. Business School, Bern University of Applied Sciences, Switzerland and ETH Zürich, Department of Mathematics, Switzerland

2. Axpo Solutions AG, Switzerland

3. SUPSI-IDSIA - Dalle Molle Institute for Artificial Intelligence, Switzerland

Abstract

For binary polynomial optimization problems of degree 2 d with n variables Sakaue, Takeda, Kim and Ito [SIAM J. Optim., 2017] proved that the \(\lceil \frac{n+2d-1}{2}\rceil \) th semidefinite (SDP) relaxation in the SoS/Lasserre hierarchy of SDP relaxations provides the exact optimal value. When n is an odd number, we show that their analysis is tight, i.e. we prove that \(\frac{n+2d-1}{2} \) levels of the SoS/Lasserre hierarchy are also necessary. Laurent [Math. Oper. Res., 2003] showed that the Sherali-Adams hierarchy requires n levels to detect the empty integer hull of a linear representation of a set with no integral points. She conjectured that the SoS/Lasserre rank for the same problem is n − 1. In this paper we disprove this conjecture and derive lower and upper bounds for the rank.

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Reference36 articles.

1. Expander flows, geometric embeddings and graph partitioning

2. Boaz Barak , Fernando G. S. L. Brandão , Aram Wettroth Harrow , Jonathan  A. Kelner , David Steurer , and Yuan Zhou . 2012 . Hypercontractivity, sum-of-squares proofs, and their applications . In STOC 2012, New York, NY, USA. 307–326. Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer, and Yuan Zhou. 2012. Hypercontractivity, sum-of-squares proofs, and their applications. In STOC 2012, New York, NY, USA. 307–326.

3. B. Barak , J.  A. Kelner , and D. Steurer . 2015. Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method . In STOC , Portland, OR, USA , June 14-17, 2015 . 143–151. B. Barak, J. A. Kelner, and D. Steurer. 2015. Dictionary Learning and Tensor Decomposition via the Sum-of-Squares Method. In STOC, Portland, OR, USA, June 14-17, 2015. 143–151.

4. B. Barak and A. Moitra . 2016. Noisy Tensor Completion via the Sum-of-Squares Hierarchy . In COLT 2016 , New York, USA , June 23-26, 2016 . 417–445. B. Barak and A. Moitra. 2016. Noisy Tensor Completion via the Sum-of-Squares Hierarchy. In COLT 2016, New York, USA, June 23-26, 2016. 417–445.

5. Grigoriy Blekherman. 2015. Symmetric sums of squares on the hypercube. (2015). Manuscript in preparation. Grigoriy Blekherman. 2015. Symmetric sums of squares on the hypercube. (2015). Manuscript in preparation.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3