Stop using the elbow criterion for k-means and how to choose the number of clusters instead

Author:

Schubert Erich1

Affiliation:

1. TU Dortmund University, Dortmund, Germany

Abstract

A major challenge when using k-means clustering often is how to choose the parameter k, the number of clusters. In this letter, we want to point out that it is very easy to draw poor conclusions from a common heuristic, the "elbow method". Better alternatives have been known in literature for a long time, and we want to draw attention to some of these easy to use options, that often perform better. This letter is a call to stop using the elbow method altogether, because it severely lacks theoretic support, and we want to encourage educators to discuss the problems of the method - if introducing it in class at all - and teach alternatives instead, while researchers and reviewers should reject conclusions drawn from the elbow method.

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Reference42 articles.

1. NP-hardness of Euclidean sum-of-squares clustering

2. An extensive comparative study of cluster validity indices

3. Bishop , C. M. Pattern recognition and machine learning , 5 th Edition. Information science and statistics. Springer , 2007 . Bishop, C. M. Pattern recognition and machine learning, 5th Edition. Information science and statistics. Springer, 2007.

4. Bock , H.-H. Clustering Methods: A History of k- Means Algorithms . Springer , 2007 , pp. 161 -- 172 . Bock, H.-H. Clustering Methods: A History of k- Means Algorithms. Springer, 2007, pp. 161--172.

5. On Some Clustering Techniques

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3