An Unsupervised Learning Tool for Plaque Tissue Characterization in Histopathological Images

Author:

Fraschini Matteo1ORCID,Castagnola Massimo2ORCID,Barberini Luigi3,Sanfilippo Roberto4,Coghe Ferdinando5,Didaci Luca1ORCID,Cau Riccardo6ORCID,Frongia Claudio1ORCID,Scartozzi Mario7,Saba Luca6,Faa Gavino38

Affiliation:

1. Dipartimento di Ingegneria Elettrica ed Elettronica, Università degli Studi di Cagliari, 09123 Cagliari, Italy

2. Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy

3. Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09123 Cagliari, Italy

4. Dipartimento di Scienze Chirurgiche, Università degli Studi di Cagliari, 09123 Cagliari, Italy

5. UOC Laboratorio Analisi, AOU of Cagliari, 09123 Cagliari, Italy

6. Department of Radiology, Azienda Ospedaliero Universitaria, University of Cagliari, 40138 Cagliari, Italy

7. Medical Oncology Unit, University Hospital and University of Cagliari, 09042 Cagliari, Italy

8. Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA

Abstract

Stroke is the second leading cause of death and a major cause of disability around the world, and the development of atherosclerotic plaques in the carotid arteries is generally considered the leading cause of severe cerebrovascular events. In recent years, new reports have reinforced the role of an accurate histopathological analysis of carotid plaques to perform the stratification of affected patients and proceed to the correct prevention of complications. This work proposes applying an unsupervised learning approach to analyze complex whole-slide images (WSIs) of atherosclerotic carotid plaques to allow a simple and fast examination of their most relevant features. All the code developed for the present analysis is freely available. The proposed method offers qualitative and quantitative tools to assist pathologists in examining the complexity of whole-slide images of carotid atherosclerotic plaques more effectively. Nevertheless, future studies using supervised methods should provide evidence of the correspondence between the clusters estimated using the proposed textural-based approach and the regions manually annotated by expert pathologists.

Funder

Fondazione di Sardegna

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3