Enabling Efficient Updates in KV Storage via Hashing

Author:

Li Yongkun1,Chan Helen H. W.2ORCID,Lee Patrick P. C.2ORCID,Xu Yinlong1

Affiliation:

1. University of Science and Technology of China, Hefei, Anhui, China

2. The Chinese University of Hong Kong, Hong Kong, China

Abstract

Persistent key-value (KV) stores mostly build on the Log-Structured Merge (LSM) tree for high write performance, yet the LSM-tree suffers from the inherently high I/O amplification. KV separation mitigates I/O amplification by storing only keys in the LSM-tree and values in separate storage. However, the current KV separation design remains inefficient under update-intensive workloads due to its high garbage collection (GC) overhead in value storage. We propose HashKV, which aims for high update performance atop KV separation under update-intensive workloads. HashKV uses hash-based data grouping , which deterministically maps values to storage space to make both updates and GC efficient. We further relax the restriction of such deterministic mappings via simple but useful design extensions. We extensively evaluate various design aspects of HashKV. We show that HashKV achieves 4.6× update throughput and 53.4% less write traffic compared to the current KV separation design. In addition, we demonstrate that we can integrate the design of HashKV with state-of-the-art KV stores and improve their respective performance.

Funder

National Nature Science Foundation of China

Research Grants Council of Hong Kong

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Increase Merge Efficiency in LSM Trees Through Coordinated Partitioning of Sorted Runs;2023 IEEE International Conference on Big Data (BigData);2023-12-15

2. Balloon: An Elastic Data Management Strategy for Interlaced Magnetic Recording;Applied Sciences;2023-08-29

3. TATune: A RocksDB Knob Tuning System Based on Transformer;IEEE Access;2023

4. Microwave assisted magnetic Recording: Physics and application to hard disk drives;Journal of Magnetism and Magnetic Materials;2022-12

5. uCleaner: An Efficient Adaptive Garbage Collection Mechanism for KV-Separated LSM-Stores;2022 5th International Conference on Data Science and Information Technology (DSIT);2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3