J-Orchestra

Author:

Tilevich Eli1,Smaragdakis Yannis2

Affiliation:

1. Virginia Tech, Blacksburg, VA

2. University of Massachusetts, Amherst, MA

Abstract

J-Orchestra is a system that enhances centralized Java programs with distribution capabilities. Operating at the bytecode level, J-Orchestra transforms a centralized Java program (i.e., running on a single Java Virtual Machine (JVM)) into a distributed one (i.e., running across multiple JVMs). This transformation effectively separates distribution concerns from the core functionality of a program. J-Orchestra follows a semiautomatic transformation process. Through a GUI, the user selects program elements (at class granularity) and assigns them to network locations. Based on the user's input, the J-Orchestra backend automatically partitions the program through compiler-level techniques, without changes to the JVM or to the Java Runtime Environment (JRE) classes. By means of bytecode engineering and code generation, J-Orchestra substitutes method calls with remote method calls, direct object references with proxy references, etc. It also translates Java language features (e.g., static methods and fields, inheritance, inner classes, new object construction, etc.) for efficient distributed execution. We detail the main technical issues that J-Orchestra addresses, including its mechanism for program transformation in the presence of unmodifiable code (e.g., in JRE classes) and the translation of concurrency and synchronization constructs to work correctly over the network. We further discuss a case study of transforming a large, commercial, third-party application for efficient execution in a client server environment and outline the architectural characteristics of centralized programs that are amenable to automated distribution with J-Orchestra.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handling Communication via APIs for Microservices;2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER);2023-05

2. Active learning for software engineering;Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software;2019-10-23

3. Intent to share;Proceedings of the 5th International Conference on Mobile Software Engineering and Systems;2018-05-27

4. Towards Mobile Cloud Computing with Single Sign-on Access;Journal of Grid Computing;2017-10-30

5. An energy-efficient offloading framework with predictable temporal correctness;Proceedings of the Second ACM/IEEE Symposium on Edge Computing;2017-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3