Performance evaluation of the Orca shared-object system

Author:

Bal Henri E.1,Bhoedjang Raoul1,Hofman Rutger1,Jacobs Ceriel1,Langendoen Koen1,Rühl Tim1,Kaashoek M. Frans2

Affiliation:

1. Vrije Univ., Amsterdam, The Netherlands

2. Massachusetts Institute of Technology, Cambridge

Abstract

Orca is a portable, object-based distributed shared memory (DSM) system. This article studies and evaluates the design choices made in the Orca system and compares Orca with other DSMs. The article gives a quantitative analysis of Orca's coherence protocol (based on write-updates with function shipping), the totally ordered group communication protocol, the strategy for object placement, and the all-software, user-space architecture. Performance measurements for 10 parallel applications illustrate the trade-offs made in the design of Orca and show that essentially the right design decisions have been made. A write-update protocol with function shipping is effective for Orca, especially since it is used in combination with techniques that avoid replicating objects that have a low read/write ratio. The overhead of totally ordered group communication on application performance is low. The Orca system is able to make near-optimal decisions for object placement and replication. In addition, the article compares the performance of Orca with that of a page-based DSM (TreadMarks) and another object-based DSM (CRL). It also analyzes the communication overhead of the DSMs for several applications. All performance measurements are done on a 32-node Pentium Pro cluster with Myrinet and Fast Ethernet networks. The results show that Orca programs send fewer messages and less data than the TreadMarks and CRL programs and obtain better speedups.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. МС2Е: The Meta-Cloud Computing Environment for Interdisciplinary Studies;Herald of the Russian Academy of Sciences;2022-02

2. On HPC and Cloud Environments Integration;Performance Evaluation Models for Distributed Service Networks;2021

3. Software Speculation on Caching DSMs;International Journal of Parallel Programming;2017-04-04

4. An Optimized Strategy for Data Service Response with Template-Based Caching and Compression;Lecture Notes in Computer Science;2014

5. Transparently increasing RMI fault tolerance;ACM SIGAPP Applied Computing Review;2012-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3