Octrees for faster isosurface generation

Author:

Wilhelms Jane1,Van Gelder Allen1

Affiliation:

1. Univ. of California, Santa Cruz

Abstract

The large size of many volume data sets often prevents visualization algorithms from providing interactive rendering. The use of hierarchical data structures can ameliorate this problem by storing summary information to prevent useless exploration of regions of little or no current interest within the volume. This paper discusses research into the use of the octree hierarchical data structure when the regions of current interest can vary during the application, and are not known a priori . Octrees are well suited to the six-sided cell structure of many volumes. A new space-efficient design is introduced for octree representations of volumes whose resolutions are not conveniently a power of two; octrees following this design are called branch-on-need octrees (BONOs). Also, a caching method is described that essentially passes information between octree neighbors whose visitation times may be quite different, then discards it when its useful life is over. Using the application of octrees to isosurface generation as a focus, space and time comparisons for octree-based versus more traditional “marching” methods are presented.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 269 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3