Affiliation:
1. University of Electronic Science and Technology of China and University of Michigan, MI
2. University of Michigan, MI
3. University of Electronic Science and Technology of China, China
Abstract
We study the problem of optimal sensor placement in the context of soil moisture sensing. We show that the soil moisture data possesses some unique features that can be used together with the commonly used Gaussian assumption to construct more scalable, robust, and better performing placement algorithms. Specifically, there exists a coarse-grained monotonic ordering of locations in their soil moisture level over time, both in terms of its first and second moments, a feature much more stable than the soil moisture process itself at these locations. This motivates a clustered sensor placement scheme, where locations are classified into clusters based on the ordering of the mean, with the number of sensors placed in each cluster determined by the ordering of the variances. We show that under idealized conditions the greedy mutual information maximization algorithm applied globally is equivalent to that applied cluster by cluster, but the latter has the advantage of being more scalable. Extensive numerical experiments are performed on a set of three-dimensional soil moisture data generated by a state-of-the-art soil moisture simulator. Our results show that our clustering approach outperforms applying the same algorithms globally, and is very robust to lack of training and errors in training data.
Funder
National Aeronautics and Space Administration
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献