Determination of Soil Agricultural Aptitude for Sugar Cane Production in Vertisols with Machine Learning

Author:

Landeta-Escamilla Ofelia1ORCID,Alvarado-Lassman Alejandro1ORCID,Sandoval-González Oscar Osvaldo1ORCID,Flores-Cuautle José de Jesús Agustín2ORCID,Rosas-Mendoza Erik Samuel2ORCID,Martínez-Sibaja Albino1ORCID,Vallejo Cantú Norma Alejandra1ORCID,Méndez Contreras Juan Manuel1ORCID

Affiliation:

1. Tecnológico Nacional de México, Instituto Tecnológico de Orizaba, Av. Oriente 9, 852, Col. Emiliano Zapata, Orizaba 94320, Mexico

2. Programa de Investigadoras e Investigadores por México del CONACYT, Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico

Abstract

Sugarcane is one of the main agro-industrial products consumed worldwide, and, therefore, the use of suitable soils is a key factor to maximize its production. As a result, the need to evaluate soil matrices, including many physical, chemical, and biological parameters, to determine the soil’s aptitude for growing food crops increases. Machine learning techniques were used to perform an in-depth analysis of the physicochemical indicators of vertisol-type soils used in sugarcane production. The importance of the relationship between each of the indicators was studied. Furthermore, and the main objective of the present work, was the determination of the minimum number of the most important physicochemical indicators necessary to evaluate the agricultural suitability of the soils, with a view to reducing the number of analyses in terms of physicochemical indicators required for the evaluation. The results obtained relating to the estimation of agricultural capability using different numbers of parameters showed accuracy results of up to 91% when implementing three parameters: Potassium (K), Calcium (Ca) and Cation Exchange Capacity (CEC). The reported results, relating to the estimation of the physicochemical parameters, indicated that it was possible to estimate eleven physicochemical parameters with an average accuracy of 73% using only the data of K, Ca and CEC as input parameters in the Machine Learning models. Knowledge of these three parameters enables determination of the values of soil potential in regard to Hydrogen (pH), organic matter (OM), Phosphorus (P), Magnesium (Mg), Sulfur (S), Boron (B), Copper (Cu), Manganese (Mn), and Zinc (Zn), the Calcium/Magnesium ratio (Ca/Mg), and also the texture of the soil.

Funder

Consejo Nacional de Ciencia y Tecnología (CONACYT), Sectorial fund of environmental

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference40 articles.

1. FAO (2015). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil. Available online: https://www.fao.org/3/i3794en/I3794en.pdf.

2. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2023, June 28). Reporte Final de Producción de Caña y Azucar Zafra 2017/2018. Available online: https://www.gob.mx/cms/uploads/attachment/file/371833/REPORTE_FINAL_.pdf.

3. Durán, R.Q., Sánchez, A.G., Lombana, A.C., Arboleda, F.M., Aguas, J.S.T., González, J.A.C., and Murillo, C.A.O. (2008). Grupos Homogéneos de Suelos del área Dedicada al Cultivo de la caña de Azúcar en el valle del río Cauca (Segunda Aproximación), Publicación Cenicaña.

4. Evaluación de aptitud de tierras al cultivo de caña de azúcar en la Huasteca potosina, México, por técnicas geomáticas;Rivera;Rev. Geogr. Norte Gd.,2013

5. What are the impacts of sugarcane production on ecosystem services and human well-being? A review;Chami;Ann. Agric. Sci.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3