Determination of Soil Agricultural Aptitude for Sugar Cane Production in Vertisols with Machine Learning
-
Published:2023-06-30
Issue:7
Volume:11
Page:1985
-
ISSN:2227-9717
-
Container-title:Processes
-
language:en
-
Short-container-title:Processes
Author:
Landeta-Escamilla Ofelia1ORCID, Alvarado-Lassman Alejandro1ORCID, Sandoval-González Oscar Osvaldo1ORCID, Flores-Cuautle José de Jesús Agustín2ORCID, Rosas-Mendoza Erik Samuel2ORCID, Martínez-Sibaja Albino1ORCID, Vallejo Cantú Norma Alejandra1ORCID, Méndez Contreras Juan Manuel1ORCID
Affiliation:
1. Tecnológico Nacional de México, Instituto Tecnológico de Orizaba, Av. Oriente 9, 852, Col. Emiliano Zapata, Orizaba 94320, Mexico 2. Programa de Investigadoras e Investigadores por México del CONACYT, Av. Insurgentes Sur 1582, Ciudad de México 03940, Mexico
Abstract
Sugarcane is one of the main agro-industrial products consumed worldwide, and, therefore, the use of suitable soils is a key factor to maximize its production. As a result, the need to evaluate soil matrices, including many physical, chemical, and biological parameters, to determine the soil’s aptitude for growing food crops increases. Machine learning techniques were used to perform an in-depth analysis of the physicochemical indicators of vertisol-type soils used in sugarcane production. The importance of the relationship between each of the indicators was studied. Furthermore, and the main objective of the present work, was the determination of the minimum number of the most important physicochemical indicators necessary to evaluate the agricultural suitability of the soils, with a view to reducing the number of analyses in terms of physicochemical indicators required for the evaluation. The results obtained relating to the estimation of agricultural capability using different numbers of parameters showed accuracy results of up to 91% when implementing three parameters: Potassium (K), Calcium (Ca) and Cation Exchange Capacity (CEC). The reported results, relating to the estimation of the physicochemical parameters, indicated that it was possible to estimate eleven physicochemical parameters with an average accuracy of 73% using only the data of K, Ca and CEC as input parameters in the Machine Learning models. Knowledge of these three parameters enables determination of the values of soil potential in regard to Hydrogen (pH), organic matter (OM), Phosphorus (P), Magnesium (Mg), Sulfur (S), Boron (B), Copper (Cu), Manganese (Mn), and Zinc (Zn), the Calcium/Magnesium ratio (Ca/Mg), and also the texture of the soil.
Funder
Consejo Nacional de Ciencia y Tecnología (CONACYT), Sectorial fund of environmental
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference40 articles.
1. FAO (2015). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil. Available online: https://www.fao.org/3/i3794en/I3794en.pdf. 2. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2023, June 28). Reporte Final de Producción de Caña y Azucar Zafra 2017/2018. Available online: https://www.gob.mx/cms/uploads/attachment/file/371833/REPORTE_FINAL_.pdf. 3. Durán, R.Q., Sánchez, A.G., Lombana, A.C., Arboleda, F.M., Aguas, J.S.T., González, J.A.C., and Murillo, C.A.O. (2008). Grupos Homogéneos de Suelos del área Dedicada al Cultivo de la caña de Azúcar en el valle del río Cauca (Segunda Aproximación), Publicación Cenicaña. 4. Evaluación de aptitud de tierras al cultivo de caña de azúcar en la Huasteca potosina, México, por técnicas geomáticas;Rivera;Rev. Geogr. Norte Gd.,2013 5. What are the impacts of sugarcane production on ecosystem services and human well-being? A review;Chami;Ann. Agric. Sci.,2020
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|