Jacdac: Service-Based Prototyping of Embedded Systems

Author:

Ball Thomas1ORCID,de Halleux Peli2ORCID,Devine James3ORCID,Hodges Steve4ORCID,Moskal Michał2ORCID

Affiliation:

1. Microsoft, Redmond, USA

2. Microsoft, Redmond, United States

3. Microsoft, Cambridge, United Kingdom

4. Lancaster University, Lancaster, United Kingdom

Abstract

The traditional approach to programming embedded systems is monolithic: firmware on a microcontroller contains both application code and the drivers needed to communicate with sensors and actuators, using low-level protocols such as I2C, SPI, and RS232. In comparison, software development for the cloud has moved to a service-based development and operation paradigm: a service provides a discrete unit of functionality that can be accessed remotely by an application, or other service, but is independently managed and updated. We propose, design, implement, and evaluate a service-based approach to prototyping embedded systems called Jacdac. Jacdac defines a service specification language, designed especially for embedded systems, along with a host of specifications for a variety of sensors and actuators. With Jacdac, each sensor/actuator in a system is paired with a low-cost microcontroller that advertises the services that represent the functionality of the underlying hardware over an efficient and low-cost single-wire bus protocol. A separate microcontroller executes the user's application program, which is a client of the Jacdac services on the bus. Our evaluation shows that Jacdac supports a service-based abstraction for sensors/actuators at low cost and reasonable performance, with many benefits for prototyping: ease of use via the automated discovery of devices and their capabilities, substitution of same-service devices for each other, as well as high-level programming, monitoring, and debugging. We also report on the experience of bringing Jacdac to commercial availability via third-party manufacturers.

Publisher

Association for Computing Machinery (ACM)

Reference37 articles.

1. Analog Devices Resource Library. 2000. Guide to Selecting and Using RS-232 RS-422 and RS-485 Serial Data Standards.

2. Arm. 2017. The Arm Mbed IoT Device Platform. https://www.mbed.com/

3. The BBC micro:bit

4. Transmitting data and power over a one-wire bus;Awtrey Dan;Sensors-The Journal of Applied Sensing Technology,1997

5. Microsoft MakeCode: embedded programming for education, in blocks and TypeScript

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plug-and-Play Physical Computing and Device Prototyping with Jacdac;GetMobile: Mobile Computing and Communications;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3