Trace-driven memory simulation

Author:

Uhlig Richard A.1,Mudge Trevor N.2

Affiliation:

1. Intel Microcomputer Research Lab, Hillsboro, OR

2. Univ. of Michigan, Ann Arbor

Abstract

As the gap between processor and memory speeds continues to widen, methods for evaluating memory system designs before they are implemented in hardware are becoming increasingly important. One such method, trace-driven memory simulation, has been the subject of intense interest among researchers and has, as a result, enjoyed rapid development and substantial improvements during the past decade. This article surveys and analyzes these developments by establishing criteria for evaluating trace-driven methods, and then applies these criteria to describe, categorize, and compare over 50 trace-driven simulation tools. We discuss the strengths and weaknesses of different approaches and show that no single method is best when all criteria, including accuracy, speed, memory, flexibility, portability, expense, and ease of use are considered. In a concluding section, we examine fundamental limitations to trace-driven simulation, and survey some recent developments in memory simulation that may overcome these bottlenecks.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodologies for Design Space Exploration;Handbook of Computer Architecture;2022

2. Novel AI based pre-silicon Performance estimation and validation of complex System-on-Chip;2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2021-12-08

3. A Survey of Cache Simulators;ACM Computing Surveys;2021-01-31

4. Finding disposable domain names: A linguistics-based stacking approach;Computer Networks;2021-01

5. Perceptron based filtering of futile prefetches in embedded VLIW DSPs;Journal of Systems Architecture;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3