Radial basis function neural network based approach to test oracle

Author:

Sangwan Om Prakash1,Bhatia Pradeep Kumar2,Singh Yogesh3

Affiliation:

1. Gautam Buddha University, Greater Noida, Uttar Pradesh, India

2. GJU of Science & Technology, Hisar, Haryana, India

3. M.S. University of Baroda, Gujarat, India

Abstract

Software testing is an important discipline, and consumes significant amount of effort. A proper strategy is required to design and generate test cases systematically and effectively. In this paper automated software test case generation with Radial Basis Function Neural Network (RBFNN) has been proposed and empirically validated with the help of a case study and compared with other techniques of soft computing. Experimental results show that RBFNN is one of the best technique for automated test case generation.

Publisher

Association for Computing Machinery (ACM)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Quantum Extreme Learning Machines for QoS Prediction of Elevators’ Software in an Industrial Context;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

2. The integration of machine learning into automated test generation: A systematic mapping study;Software Testing, Verification and Reliability;2023-05-02

3. A Hybridized Artificial Neural Network for Automated Software Test Oracle;Computer Systems Science and Engineering;2023

4. Machine learning‐based test oracles for performance testing of cyber‐physical systems: An industrial case study on elevators dispatching algorithms;Journal of Software: Evolution and Process;2022-05-25

5. Using machine learning to generate test oracles: a systematic literature review;Proceedings of the 1st International Workshop on Test Oracles;2021-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3