Type-directed synthesis of visualizations from natural language queries

Author:

Chen Qiaochu1ORCID,Pailoor Shankara1ORCID,Barnaby Celeste1ORCID,Criswell Abby1ORCID,Wang Chenglong2ORCID,Durrett Greg1ORCID,Dillig Işil1ORCID

Affiliation:

1. University of Texas at Austin, USA

2. Microsoft Research, USA

Abstract

We propose a new technique based on program synthesis for automatically generating visualizations from natural language queries. Our method parses the natural language query into a refinement type specification using the intents-and-slots paradigm and leverages type-directed synthesis to generate a set of visualization programs that are most likely to meet the user's intent. Our refinement type system captures useful hints present in the natural language query and allows the synthesis algorithm to reject visualizations that violate well-established design guidelines for the input data set. We have implemented our ideas in a tool called Graphy and evaluated it on NLVCorpus, which consists of 3 popular datasets and over 700 real-world natural language queries. Our experiments show that Graphy significantly outperforms state-of-the-art natural language based visualization tools, including transformer and rule-based ones.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference50 articles.

1. Dzmitry Bahdanau , Kyunghyun Cho , and Yoshua Bengio . 2014 . Neural Machine Translation by Jointly Learning to Align and Translate . In International Conference on Learning Representations. arxiv:1409 .0473 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. In International Conference on Learning Representations. arxiv:1409.0473

2. Tom Brown , Benjamin Mann , Nick Ryder , Melanie Subbiah , Jared D Kaplan , Prafulla Dhariwal , Arvind Neelakantan , Pranav Shyam , Girish Sastry , Amanda Askell , Sandhini Agarwal , Ariel Herbert-Voss , Gretchen Krueger , Tom Henighan , Rewon Child , Aditya Ramesh , Daniel Ziegler , Jeffrey Wu , Clemens Winter , Chris Hesse , Mark Chen , Eric Sigler , Mateusz Litwin , Scott Gray , Benjamin Chess , Jack Clark , Christopher Berner , Sam McCandlish , Alec Radford , Ilya Sutskever , and Dario Amodei . 2020. Language Models are Few-Shot Learners . In Advances in Neural Information Processing Systems , H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.). 33, Curran Associates, Inc. , 1877 –1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.). 33, Curran Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

3. Qiaochu Chen Shankara Pailoor Celeste Barnaby Abby Criswell Chenglong Wang Greg Durrett and Isil Dillig. 2022. Type-Directed Synthesis of Visualizations from Natural Language Queries. https://doi.org/10.48550/ARXIV.2209.01081 10.48550/ARXIV.2209.01081

4. Qiaochu Chen Shankara Pailoor Celeste Barnaby Abby Criswell Chenglong Wang Greg Durrett and Isil Dillig. 2022. Type-Directed Synthesis of Visualizations from Natural Language Queries. https://doi.org/10.48550/ARXIV.2209.01081

5. Program Synthesis Using Deduction-Guided Reinforcement Learning

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SynthoMinds: Bridging human programming intuition with retrieval, analogy, and reasoning in program synthesis;Journal of Systems and Software;2024-10

2. DynaVis: Dynamically Synthesized UI Widgets for Visualization Editing;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

3. Are LLMs ready for Visualization?;2024 IEEE 17th Pacific Visualization Conference (PacificVis);2024-04-23

4. Data Formulator: AI-powered Concept-driven Visualization Authoring;IEEE Transactions on Visualization and Computer Graphics;2023

5. Synthominds: Bridging Human Programming Intuition with Retrieval, Analogy, and Reasoning in Program Synthesis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3