Adaptive Incident Radiance Field Sampling and Reconstruction Using Deep Reinforcement Learning

Author:

Huo Yuchi1,Wang Rui2,Zheng Ruzahng2,Xu Hualin2,Bao Hujun2,Yoon Sung-Eui3

Affiliation:

1. KAIST and State Key Lab of CAD&CG, Zhejiang University

2. State Key Lab of CAD&CG, Zhejiang University

3. KAIST

Abstract

Serious noise affects the rendering of global illumination using Monte Carlo (MC) path tracing when insufficient samples are used. The two common solutions to this problem are filtering noisy inputs to generate smooth but biased results and sampling the MC integrand with a carefully crafted probability distribution function (PDF) to produce unbiased results. Both solutions benefit from an efficient incident radiance field sampling and reconstruction algorithm. This study proposes a method for training quality and reconstruction networks (Q- and R-networks, respectively) with a massive offline dataset for the adaptive sampling and reconstruction of first-bounce incident radiance fields. The convolutional neural network (CNN)-based R-network reconstructs the incident radiance field in a 4D space, whereas the deep reinforcement learning (DRL)-based Q-network predicts and guides the adaptive sampling process. The approach is verified by comparing it with state-of-the-art unbiased path guiding methods and filtering methods. Results demonstrate improvements for unbiased path guiding and competitive performance in biased applications, including filtering and irradiance caching.

Funder

MSIT/NRF

National Key R8D Program of China

NSFC

Zhejiang Provincial NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference52 articles.

1. Kernel-predicting convolutional networks for denoising Monte Carlo renderings

2. Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings

3. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder;Alla Chaitanya Chakravarty R.;ACM Trans. Graph.,2017

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3