Neural Path Sampling for Rendering Pure Specular Light Transport

Author:

Yu Rui12,Dong Yue2,Kong Youkang23,Tong Xin2

Affiliation:

1. University of Science and Technology of China Hefei China

2. Microsoft Research Asia Beijing China

3. Tsinghua University Beijing China

Abstract

AbstractMulti‐bounce, pure specular light paths produce complex lighting effects, such as caustics and sparkle highlights, which are challenging to render due to their sparse and diverse nature. We introduce a learning‐based method for the efficient rendering of pure specular light transport. The key idea is training a neural network to model the distribution of all specular light paths between pairs of endpoints for one specular object. To achieve this, for each object, our method models the distribution of sparse and diverse specular light paths between two endpoints using smooth 2D maps of ray directions from one endpoint and represents these maps with a 2D convolutional network. We design a training scheme to efficiently sample specular light paths from the scene and train the network. Once trained, our method predicts specular light paths for a given pair of endpoints using the network and employs root‐finding‐based algorithms for rendering the specular light transport. Experimental results demonstrate that our method generates high‐quality results, supports dynamic lighting and moving objects within the scene, and significantly enhances the rendering speed of existing techniques.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference51 articles.

1. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. CorradoG. S. DavisA. DeanJ. DevinM. GhemawatS. GoodfellowI. HarpA. IrvingG. IsardM. JiaY. JozefowiczR. KaiserL. KudlurM. LevenbergJ. ManéD. MongaR. MooreS. MurrayD. OlahC. SchusterM. ShlensJ. SteinerB. SutskeverI. TalwarK. TuckerP. VanhouckeV. VasudevanV. ViégasF. VinyalsO. WardenP. WattenbergM. WickeM. YuY. ZhengX.:TensorFlow: Large‐scale machine learning on heterogeneous systems 2015. Software available from tensorflow.org. URL:https://www.tensorflow.org/.

2. Principles of Optics

3. Spherical Gaussian Light‐field Textures for Fast Precomputed Global Illumination

4. ContyA. KullaC.:Adaptive Caustics Rendering in Production with Photon Guiding. InProceeding of 13th EGSR Industry Track Eurographics(London UK 2020).

5. Manifold Path Guiding for Importance Sampling Specular Chains

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photon-Driven Manifold Sampling;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3