Succinct Range Filters

Author:

Zhang Huanchen1,Lim Hyeontaek1,Leis Viktor2,Andersen David G.1,Kaminsky Michael3,Keeton Kimberly4,Pavlo Andrew1

Affiliation:

1. Carnegie Mellon University, Forbes Ave, Pittsburgh, PA

2. Friedrich Schiller University Jena, Fürstengraben, Jena, Germany

3. BrdgAI

4. Hewlett Packard Labs, America Center Dr., San Jose, CA

Abstract

We present the Succinct Range Filter (SuRF), a fast and compact data structure for approximate membership tests. Unlike traditional Bloom filters, SuRF supports both single-key lookups and common range queries: open-range queries, closed-range queries, and range counts. SuRF is based on a new data structure called the Fast Succinct Trie (FST) that matches the point and range query performance of state-of-the-art order-preserving indexes, while consuming only 10 bits per trie node. The false-positive rates in SuRF for both point and range queries are tunable to satisfy different application needs. We evaluate SuRF in RocksDB as a replacement for its Bloom filters to reduce I/O by filtering requests before they access on-disk data structures. Our experiments on a 100-GB dataset show that replacing RocksDB’s Bloom filters with SuRFs speeds up open-seek (without upper-bound) and closed-seek (with upper-bound) queries by up to 1.5× and 5× with a modest cost on the worst-case (all-missing) point query throughput due to slightly higher false-positive rate.

Funder

U.S. National Science Foundation

Intel Science and Technology Center for Visual Cloud Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference69 articles.

1. 2010. tx-trie 0.18—Succinct Trie Implementation. Retrieved from https://github.com/hillbig/tx-trie. 2010. tx-trie 0.18—Succinct Trie Implementation. Retrieved from https://github.com/hillbig/tx-trie.

2. 2013. Squid Web Proxy Cache. Retrieved from http://www.squid-cache.org/. 2013. Squid Web Proxy Cache. Retrieved from http://www.squid-cache.org/.

3. 2014. Google LevelDB. Retrieved from https://github.com/google/leveldb. 2014. Google LevelDB. Retrieved from https://github.com/google/leveldb.

4. 2015. Apache HBase. Retrieved from https://hbase.apache.org/. 2015. Apache HBase. Retrieved from https://hbase.apache.org/.

5. 2015. Facebook MyRocks. Retrieved from http://myrocks.io/. 2015. Facebook MyRocks. Retrieved from http://myrocks.io/.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trie and LOUDS hybrid model for efficient e-commerce processing in cloud environment;Simulation Modelling Practice and Theory;2024-07

2. Beyond Bloom: A Tutorial on Future Feature-Rich Filters;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Optimizing Time Series Queries with Versions;Proceedings of the ACM on Management of Data;2024-05-29

4. Grafite: Taming Adversarial Queries with Optimal Range Filters;Proceedings of the ACM on Management of Data;2024-03-12

5. LayerBF: A Space Allocation Policy for Bloom Filter in LSM-Tree;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3