Grafite: Taming Adversarial Queries with Optimal Range Filters

Author:

Costa Marco1ORCID,Ferragina Paolo1ORCID,Vinciguerra Giorgio1ORCID

Affiliation:

1. University of Pisa, Pisa, Italy

Abstract

Range filters allow checking whether a query range intersects a given set of keys with a chance of returning a false positive answer, thus generalising the functionality of Bloom filters from point to range queries. Existing practical range filters have addressed this problem heuristically, resulting in high false positive rates and query times when dealing with adversarial inputs, such as in the common scenario where queries are correlated with the keys. We introduce Grafite, a novel range filter that solves these issues with a simple design and clear theoretical guarantees that hold regardless of the input data and query distribution: given a fixed space budget of B bits per key, the query time is O(1), and the false positive probability is upper bounded by l/2B-2, where l is the query range size. Our experimental evaluation shows that Grafite is the only range filter to date to achieve robust and predictable false positive rates across all combinations of datasets, query workloads, and range sizes, while providing faster queries and construction times, and dominating all competitors in the case of correlated queries. As a further contribution, we introduce a very simple heuristic range filter whose performance on uncorrelated queries is very close to or better than the one achieved by the best heuristic range filters proposed in the literature so far.

Funder

Ministero dell'Università e della Ricerca

European Union

European Union ? NextGenerationEU ? PNRR

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3