Affiliation:
1. Department of Computer Science, ETH Zurich, Switzerland
Abstract
Developing high-performance and energy-efficient algorithms for maximum matchings is becoming increasingly important in social network analysis, computational sciences, scheduling, and others. In this work, we propose the first maximum matching algorithm designed for FPGAs; it is energy-efficient and has provable guarantees on accuracy, performance, and storage utilization. To achieve this, we forego popular graph processing paradigms, such as vertex-centric programming, that often entail large communication costs. Instead, we propose a
substream-centric
approach, in which the input stream of data is divided into substreams processed independently to enable more parallelism while lowering communication costs. We base our work on the
theory of streaming graph algorithms
and analyze 14 models and 28 algorithms. We use this analysis to provide theoretical underpinning that matches the physical constraints of FPGA platforms. Our algorithm delivers high performance (more than 4× speedup over tuned parallel CPU variants), low memory, high accuracy, and effective usage of FPGA resources. The substream-centric approach could easily be extended to other algorithms to offer low-power and high-performance graph processing on FPGAs.
Funder
Marie Curie Actions for People COFUND program
ETH Zurich Postdoctoral Fellowship
Publisher
Association for Computing Machinery (ACM)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献