Affiliation:
1. University of Connecticut, Storrs, CT
Abstract
Nanoelectronic devices are considered to be the computational fabrics for the emerging nanocomputing systems due to their ultra-high speed and integration density. However, the imperfect bottom-up self-assembly fabrication leads to excessive defects that have become a barrier for achieving reliable computing. In addition, transient errors continue to be a problem. The massive parallelism rendered by nanoscale integration opens up new opportunities but also poses challenges on how to manage such massive resources for reliable and high-performance computing. In this paper, we propose a nanoarchitecture solution to address these emerging challenges. By using dynamic redundancy allocation, the massive parallelism is exploited to jointly achieve fault (defect/error) tolerance and high performance. Simulation results demonstrate the effectiveness of the proposed technique under a range of fault rates and operating conditions.
Funder
University of Connecticut
Division of Computing and Communication Foundations
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献