Near-optimal Distributed Triangle Enumeration via Expander Decompositions

Author:

Chang Yi-Jun1ORCID,Pettie Seth2,Saranurak Thatchaphol3,Zhang Hengjie4

Affiliation:

1. ETH Zürich, Switzerland

2. University of Michigan, USA

3. Toyota Technological Institute at Chicago, USA

4. Columbia University, New York, NY, USA

Abstract

We present improved distributed algorithms for variants of the triangle finding problem in the model. We show that triangle detection, counting, and enumeration can be solved in rounds using expander decompositions . This matches the triangle enumeration lower bound of by Izumi and Le Gall [PODC’17] and Pandurangan, Robinson, and Scquizzato [SPAA’18], which holds even in the model. The previous upper bounds for triangle detection and enumeration in were and , respectively, due to Izumi and Le Gall [PODC’17]. An -expander decomposition of a graph is a clustering of the vertices such that (i) each cluster induces a subgraph with conductance at least and (ii) the number of inter-cluster edges is at most . We show that an -expander decomposition with can be constructed in rounds for any and positive integer . For example, a -expander decomposition only requires rounds to compute, which is optimal up to subpolynomial factors, and a -expander decomposition can be computed in rounds, for any arbitrarily small constant . Our triangle finding algorithms are based on the following generic framework using expander decompositions, which is of independent interest. We first construct an expander decomposition. For each cluster, we simulate algorithms with small overhead by applying the expander routing algorithm due to Ghaffari, Kuhn, and Su [PODC’17] Finally, we deal with inter-cluster edges using recursive calls.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey of Distributed Graph Algorithms on Massive Graphs;ACM Computing Surveys;2024-09-05

2. Expander Hierarchies for Normalized Cuts on Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. Deterministic near-optimal distributed listing of cliques;Distributed Computing;2024-06-20

4. Brief Announcement: Low-Distortion Clustering in Bounded Growth Graphs;Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing;2024-06-17

5. Computing Minimum Weight Cycle in the CONGEST Model;Proceedings of the 43rd ACM Symposium on Principles of Distributed Computing;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3