Experimental Demonstration of STT-MRAM-based Nonvolatile Instantly On/Off System for IoT Applications: Case Studies

Author:

Li Yueting1ORCID,Kang Wang1ORCID,Zhou Kunyu2ORCID,Qiu Keni2ORCID,Zhao Weisheng1ORCID

Affiliation:

1. Beihang University, Beijing, China

2. Capital Normal University, Beijing, China

Abstract

Energy consumption has been a big challenge for electronic devices, particularly for battery-powered Internet of Things (IoT) equipment. To address such a challenge, on the one hand, low-power electronic design methodologies and novel power management techniques have been proposed, such as nonvolatile memories and instantly on/off systems; on the other hand, the energy harvesting technology by collecting signals from human activity or the environment has attracted widespread attention in the IoT area. However, the system with self-powered energy harvesting may suffer frequent energy failures or fluctuating energy conditions, which degrade system reliability and user experience. Therefore, how to make the system under unreliable power inputs operate correctly and efficiently is one of the most critical issues for energy harvesting technology. In this article, we built an instantly on/off system based on nonvolatile STT-MRAM for IoT applications, which can instantly power on/off under different conditions of the harvested energy. The system powers on and operates normally when the harvested energy is enough (over the preset threshold); otherwise, the system powers off and stores the operational data back to the nonvolatile STT-MRAM. We described implementations of the hardware/software co-designed architecture (with image acquisition as an example) based on the commercialized 32 MB STT-MRAM, and we experimentally demonstrated the system functionality and efficiency under five typical energy harvesting scenarios, including radio frequency, thermal, solar, piezoelectric, and WIFI. Our experimental results show that the power consumption and data restore time were reduced by 15.1% and 714 times, respectively, in comparison with the DRAM-based counterpart.

Funder

National Natural Science Foundation of China

International Collaboration Project

Beijing Nova Program from Beijing Municipal Science and Technology Commission

Beijing Natural Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3