Ultra High-Density SOT-MRAM Design for Last-Level On-Chip Cache Application

Author:

Seo Yeongkyo1,Kwon Kon-Woo2ORCID

Affiliation:

1. Department of Information and Communication Engineering, Inha University, Incheon 22212, Republic of Korea

2. Department of Computer Engineering, Hongik University, Seoul 04066, Republic of Korea

Abstract

This paper presents ultra high-density spin-orbit torque magnetic random-access memory (SOT-MRAM) for last-level data cache application. Although SOT-MRAM has many appealing attributes of low write energy, nonvolatility, and high reliability, it poses challenges to ultra-high-density memory implementation. Due to using two access transistors per cell, the vertical dimension of SOT-MRAM is >40% longer than that of the spin-transfer torque magnetic random-access memory (STT-MRAM), a single transistor-based design. Moreover, the horizontal dimension cannot be reduced below two metal pitches due to the two vertical metal stacks per cell. This paper proposes an ultra-high-density SOT-MRAM design by reducing the vertical and horizontal dimensions. The proposed SOT-MRAM is designed by a single transistor with a Schottky diode to achieve lesser vertical dimension than the two-transistor-based design of conventional SOT-MRAM. Moreover, the horizontal dimension is also reduced by sharing a vertical metal between two consecutive bit-cells in the same row. The comparison of the proposed designs with the conventional SOT-MRAM reveals a 63% area reduction. Compared with STT-MRAM, the proposed high-density memory design achieves 48% higher integration density, 68% lower write power, 29% lower read power, and 1.9× higher read-disturb margin.

Funder

INHA UNIVERSITY Research Grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3