Nanoscale electronic synapses using phase change devices

Author:

Jackson Bryan L.1,Rajendran Bipin2,Corrado Gregory S.1,Breitwisch Matthew2,Burr Geoffrey W.1,Cheek Roger2,Gopalakrishnan Kailash1,Raoux Simone2,Rettner Charles T.1,Padilla Alvaro1,Schrott Alex G.2,Shenoy Rohit S.1,Kurdi Bülent N.1,Lam Chung H.2,Modha Dharmendra S.1

Affiliation:

1. IBM Almaden Research Center, San Jose, CA

2. IBM T. J. Watson Research Center, Yorktown Heights, NY

Abstract

The memory capacity, computational power, communication bandwidth, energy consumption, and physical size of the brain all tend to scale with the number of synapses, which outnumber neurons by a factor of 10,000. Although progress in cortical simulations using modern digital computers has been rapid, the essential disparity between the classical von Neumann computer architecture and the computational fabric of the nervous system makes large-scale simulations expensive, power hungry, and time consuming. Over the last three decades, CMOS-based neuromorphic implementations of “electronic cortex” have emerged as an energy efficient alternative for modeling neuronal behavior. However, the key ingredient for electronic implementation of any self-learning system—programmable, plastic Hebbian synapses scalable to biological densities—has remained elusive. We demonstrate the viability of implementing such electronic synapses using nanoscale phase change devices. We introduce novel programming schemes for modulation of device conductance to closely mimic the phenomenon of Spike Timing Dependent Plasticity (STDP) observed biologically, and verify through simulations that such plastic phase change devices should support simple correlative learning in networks of spiking neurons. Our devices, when arranged in a crossbar array architecture, could enable the development of synaptronic systems that approach the density (∼10 11 synapses per sq cm) and energy efficiency (consuming ∼1pJ per synaptic programming event) of the human brain.

Funder

Defense Sciences Office, DARPA

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3