The Hidden Rules of Hanabi: How Humans Outperform AI Agents

Author:

Sidji Matthew1ORCID,Smith Wally2ORCID,Rogerson Melissa J.3ORCID

Affiliation:

1. School of Computing and Information Systems, University of Melbourne, Australia

2. School of Computing & Information Systems, The University of Melbourne, Australia

3. School of Computing and Information Systems, The University of Melbourne, Australia

Publisher

ACM

Reference78 articles.

1. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)

2. Mental Models of Mere Mortals with Explanations of Reinforcement Learning

3. Beyond Accuracy: The Role of Mental Models in Human-AI Team Performance

4. Acceptability of an Embodied Conversational Agent for Type 2 Diabetes Self-Management Education and Support via a Smartphone App: Mixed Methods Study

5. Nolan Bard , Jakob  N. Foerster , Sarath Chandar , Neil Burch , Marc Lanctot , H.  Francis Song , Emilio Parisotto , Vincent Dumoulin , Subhodeep Moitra , Edward Hughes , Iain Dunning , Shibl Mourad , Hugo Larochelle , Marc  G. Bellemare , and Michael Bowling . 2020. The Hanabi challenge: A new frontier for AI research. Artificial Intelligence 280 (March 2020 ), 103216. https://doi.org/10.1016/j.artint.2019.103216 10.1016/j.artint.2019.103216 Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. 2020. The Hanabi challenge: A new frontier for AI research. Artificial Intelligence 280 (March 2020), 103216. https://doi.org/10.1016/j.artint.2019.103216

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. More than Task Performance: Developing New Criteria for Successful Human-AI Teaming Using the Cooperative Card Game Hanabi;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-02

2. Editorial: Games May Host the First Rightful AI Citizens;Games: Research and Practice;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3