Fusion Based AER System Using Deep Learning Approach for Amplitude and Frequency Analysis

Author:

Reddy A. Pramod1,V. Vijayarajan1

Affiliation:

1. School of Computer Science and Engineering Vellore Institute of Technology, Vellore, Tamil Nadu, INDIA

Abstract

Automatic emotion recognition from Speech (AERS) systems based on acoustical analysis reveal that some emotional classes persist with ambiguity. This study employed an alternative method aimed at providing deep understanding into the amplitude–frequency, impacts of various emotions in order to aid in the advancement of near term, more effectively in classifying AER approaches. The study was undertaken by converting narrow 20 ms frames of speech into RGB or grey-scale spectrogram images. The features have been used to fine-tune a feature selection system that had previously been trained to recognise emotions. Two different Linear and Mel spectral scales are used to demonstrate a spectrogram. An inductive approach for in sighting the amplitude and frequency features of various emotional classes. We propose a two-channel profound combination of deep fusion network model for the efficient categorization of images. Linear and Mel- spectrogram is acquired from Speech-signal, which is prepared in the recurrence area to input Deep Neural Network. The proposed model Alex-Net with five convolutional layers and two fully connected layers acquire most vital features form spectrogram images plotted on the amplitude-frequency scale. The state-of-the-art is compared with benchmark dataset (EMO-DB). RGB and saliency images are fed to pre-trained Alex-Net tested both EMO-DB and Telugu dataset with an accuracy of 72.18% and fused image features less computations reaching to an accuracy 75.12%. The proposed model show that Transfer learning predict efficiently than Fine-tune network. When tested on Emo-DB dataset, the propȯsed system adequately learns discriminant features from speech spectrȯgrams and outperforms many stȧte-of-the-art techniques.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference62 articles.

1. Microscopic modeling of large-scale pedestrian-vehicle conflicts in the city of Madinah, Saudi Arabia

2. Gender identification using mfcc for telephone applications-a comparative study;Ahmad Jamil;arXiv:1601.01577,2016

3. Effect of speech compression on the automatic recognition of emotions;Albahri A.;International Journal of Signal Processing Systems,2016

4. Information Gathering Schemes for Collaborative Sensor Devices

5. Abdul Malik Badshah Nasir Rahim Noor Ullah Soonil Kwon and Sung Wook Baik. 2017. Deep features-based speech emotion recognition for smart affective services. (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3