Affiliation:
1. School of Computer Science and Engineering Vellore Institute of Technology, Vellore, Tamil Nadu, INDIA
Abstract
Automatic emotion recognition from Speech (AERS) systems based on acoustical analysis reveal that some emotional classes persist with ambiguity. This study employed an alternative method aimed at providing deep understanding into the amplitude–frequency, impacts of various emotions in order to aid in the advancement of near term, more effectively in classifying AER approaches. The study was undertaken by converting narrow 20 ms frames of speech into RGB or grey-scale spectrogram images. The features have been used to fine-tune a feature selection system that had previously been trained to recognise emotions. Two different Linear and Mel spectral scales are used to demonstrate a spectrogram. An inductive approach for in sighting the amplitude and frequency features of various emotional classes. We propose a two-channel profound combination of deep fusion network model for the efficient categorization of images. Linear and Mel- spectrogram is acquired from Speech-signal, which is prepared in the recurrence area to input Deep Neural Network. The proposed model Alex-Net with five convolutional layers and two fully connected layers acquire most vital features form spectrogram images plotted on the amplitude-frequency scale. The state-of-the-art is compared with benchmark dataset (EMO-DB). RGB and saliency images are fed to pre-trained Alex-Net tested both EMO-DB and Telugu dataset with an accuracy of 72.18% and fused image features less computations reaching to an accuracy 75.12%. The proposed model show that Transfer learning predict efficiently than Fine-tune network. When tested on Emo-DB dataset, the propȯsed system adequately learns discriminant features from speech spectrȯgrams and outperforms many stȧte-of-the-art techniques.
Publisher
Association for Computing Machinery (ACM)