Inside Importance Factors of Graph-Based Keyword Extraction on Chinese Short Text

Author:

Chen Junjie1,Hou Hongxu2,Gao Jing3

Affiliation:

1. College of Computer Science, Inner Mongolia University, China and College of Computer Science and Information Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China

2. College of Computer Science, Inner Mongolia University, Hohhot, Inner Mongolia, China

3. College of Computer Science and Information Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China

Abstract

Keywords are considered to be important words in the text and can provide a concise representation of the text. With the surge of unlabeled short text on the Internet, automatic keyword extraction task has proven useful in other information processing applications. Graph-based approaches are prevalent unsupervised models for this task. However, most of these methods emphasize the importance of the relation between words without considering other importance factors. Furthermore, when measuring the importance of a word in a text, the damping factor is set to 0.85 following PageRank. To the best of our knowledge, there is no existing work investigating the impact of the damping factor on the keyword extraction task. In addition, there are few publicly available labeled Chinese short text datasets for this task. In this article, we investigate the importance parts of words in a given document and propose an improved graph-based method for keyword extraction from short documents. Moreover, we analyze the impact of importance factors on performance. We also provide annotated long and short Chinese datasets for this task. The model is performed on Chinese and English datasets, and results show that our model obtains improvements in performance over the previous unsupervised models on short documents. Comparative experiments show that the damping factor is related to the text length, which is neglected in traditional methods.

Funder

Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry

Inner Mongolia Natural Science Foundation of China

Research and Application of Big Data Key Technologies in Discipline Inspection and Supervision

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference51 articles.

1. Using Noun Phrase Heads to Extract Document Keyphrases

2. NE-Rank: A Novel Graph-Based Keyphrase Extraction in Twitter

3. Latent Dirichlet allocation;Blei David M.;Journal of Machine Learning Research 3,2003

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3