Using citation networks to evaluate the impact of text length on keyword extraction

Author:

Tohalino Jorge A. V.,Silva Thiago C.ORCID,Amancio Diego R.ORCID

Abstract

The identification of key concepts within unstructured data is of paramount importance in practical applications. Despite the abundance of proposed methods for extracting primary topics, only a few works investigated the influence of text length on the performance of keyword extraction (KE) methods. Specifically, many studies lean on abstracts and titles for content extraction from papers, leaving it uncertain whether leveraging the complete content of papers can yield consistent results. Hence, in this study, we employ a network-based approach to evaluate the concordance between keywords extracted from abstracts and those from the entire papers. Community detection methods are utilized to identify interconnected papers in citation networks. Subsequently, paper clusters are formed to identify salient terms within each cluster, employing a methodology akin to the term frequency-inverse document frequency (tf-idf) approach. Once each cluster has been endowed with its distinctive set of key terms, these selected terms are employed to serve as representative keywords at the paper level. The top-ranked words at the cluster level, which also appear in the abstract, are chosen as keywords for the paper. Our findings indicate that although various community detection methods used in KE yield similar levels of accuracy. Notably, text clustering approaches outperform all citation-based methods, while all approaches yield relatively low accuracy values. We also identified a lack of concordance between keywords extracted from the abstracts and those extracted from the corresponding full-text source. Considering that citations and text clustering yield distinct outcomes, combining them in hybrid approaches could offer improved performance.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

CNPq foundation

Fundação de Amparo à Pesquisa do Estado de São Paulo

CNPq-Brazil

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3