An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform

Author:

Ailon Nir1,Liberty Edo2

Affiliation:

1. Technion -- Israel Institute of Technology

2. Yahoo! Research Labs, Israel

Abstract

The problems of random projections and sparse reconstruction have much in common and individually received much attention. Surprisingly, until now they progressed in parallel and remained mostly separate. Here, we employ new tools from probability in Banach spaces that were successfully used in the context of sparse reconstruction to advance on an open problem in random pojection. In particular, we generalize and use an intricate result by Rudelson and Veshynin [2008] for sparse reconstruction which uses Dudley’s theorem for bounding Gaussian processes. Our main result states that any set of N = exp( Õ ( n )) real vectors in n dimensional space can be linearly mapped to a space of dimension k = O (log N polylog( n )), while (1) preserving the pairwise distances among the vectors to within any constant distortion and (2) being able to apply the transformation in time O ( n log n ) on each vector. This improves on the best known bound N = exp( Õ ( n 1/2 )) achieved by Ailon and Liberty [2009] and N = exp( Õ ( n 1/3 )) by Ailon and Chazelle [2010]. The dependence in the distortion constant however is suboptimal, and since the publication of an early version of the work, the gap between upper and lower bounds has been considerably tightened obtained by Krahmer and Ward [2011]. For constant distortion, this settles the open question posed by these authors up to a polylog( n ) factor while considerably simplifying their constructions.

Funder

Seventh Framework Programme

German-Israeli Foundation for Scientific Research and Development

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3