Abstract
AbstractFix $$p\in [1,\infty )$$
p
∈
[
1
,
∞
)
, $$K\in (0,\infty )$$
K
∈
(
0
,
∞
)
, and a probability measure $$\mu $$
μ
. We prove that for every $$n\in \mathbb {N}$$
n
∈
N
, $$\varepsilon \in (0,1)$$
ε
∈
(
0
,
1
)
, and $$x_1,\ldots ,x_n\in L_p(\mu )$$
x
1
,
…
,
x
n
∈
L
p
(
μ
)
with $$\big \Vert \max _{i\in \{1,\ldots ,n\}} |x_i| \big \Vert _{L_p(\mu )} \le K$$
‖
max
i
∈
{
1
,
…
,
n
}
|
x
i
|
‖
L
p
(
μ
)
≤
K
, there exist $$d\le \frac{32e^2 (2K)^{2p}\log n}{\varepsilon ^2}$$
d
≤
32
e
2
(
2
K
)
2
p
log
n
ε
2
and vectors $$y_1,\ldots , y_n \in \ell _p^d$$
y
1
,
…
,
y
n
∈
ℓ
p
d
such that $$\begin{aligned} {\forall }\,\,i,j\in \{1,\ldots ,n\}, \quad \Vert x_i-x_j\Vert ^p_{L_p(\mu )}-\varepsilon\le & {} \Vert y_i-y_j\Vert _{\ell _p^d}^p\le \Vert x_i-x_j\Vert ^p_{L_p(\mu )}+\varepsilon . \end{aligned}$$
∀
i
,
j
∈
{
1
,
…
,
n
}
,
‖
x
i
-
x
j
‖
L
p
(
μ
)
p
-
ε
≤
‖
y
i
-
y
j
‖
ℓ
p
d
p
≤
‖
x
i
-
x
j
‖
L
p
(
μ
)
p
+
ε
.
Moreover, the argument implies the existence of a greedy algorithm which outputs $$\{y_i\}_{i=1}^n$$
{
y
i
}
i
=
1
n
after receiving $$\{x_i\}_{i=1}^n$$
{
x
i
}
i
=
1
n
as input. The proof relies on a derandomized version of Maurey’s empirical method (1981) combined with a combinatorial idea of Ball (1990) and a suitable change of measure. Motivated by the above embedding, we introduce the notion of $$\varepsilon $$
ε
-isometric dimension reduction of the unit ball $${\textbf {B}}_E$$
B
E
of a normed space $$(E,\Vert \cdot \Vert _E)$$
(
E
,
‖
·
‖
E
)
and we prove that $${\textbf {B}}_{\ell _p}$$
B
ℓ
p
does not admit $$\varepsilon $$
ε
-isometric dimension reduction by linear operators for any value of $$p\ne 2$$
p
≠
2
.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference44 articles.
1. Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)
2. Ailon, N., Chazelle, B.: The fast Johnson–Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009)
3. Ailon, N., Liberty, E.: An almost optimal unrestricted fast Johnson–Lindenstrauss transform. ACM Trans. Algorithms 9(3), # 21 (2013)
4. Arias-de Reyna, J., Ball, K., Villa, R.: Concentration of the distance in finite-dimensional normed spaces. Mathematika 45(2), 245–252 (1998)
5. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: robust concepts and random projection. In: 40th Annual Symposium on Foundations of Computer Science (New York 1999), pp. 616–623. IEEE Computer Society, Los Alamitos (1999)