Potamoi: Accelerating Neural Rendering via a Unified Streaming Architecture

Author:

Feng Yu1ORCID,Lin Weikai2ORCID,Liu Zihan3ORCID,Leng Jingwen45ORCID,Guo Minyi65ORCID,Zhao Han3ORCID,Hou Xiaofeng3ORCID,Zhao Jieru3ORCID,Zhu Yuhao7ORCID

Affiliation:

1. John Hopcropt Center, Shanghai Jiao Tong University, Shanghai, China

2. Department of Computer Science, University of Rochester, Rochester, United States

3. Shanghai Jiao Tong University, Shanghai China

4. Department of Computer Science, Shanghai Jiao Tong University, Shanghai, China

5. Shanghai Qi Zhi Institute, Shanghai, China

6. Computer Science, Shanghai Jiao Tong University, Shanghai, China

7. University of Rochester, Rochester, United States

Abstract

Neural Radiance Field (NeRF) has emerged as a promising alternative for photorealistic rendering. Despite recent algorithmic advancements, achieving real-time performance on today’s resource-constrained devices remains challenging. In this paper, we identify the primary bottlenecks in current NeRF algorithms and introduce a unified algorithm-architecture co-design, Potamoi , designed to accommodate various NeRF algorithms. Specifically, we introduce a runtime system featuring a plug-and-play algorithm, SpaRW , which significantly reduces the per-frame computational workload and alleviates compute inefficiencies. Furthermore, our unified streaming pipeline coupled with customized hardware support effectively tames both SRAM and DRAM inefficiencies by minimizing repetitive DRAM access and completely eliminating SRAM bank conflicts. When evaluated against a baseline utilizing a dedicated DNN accelerator, our framework demonstrates a speed-up and energy reduction of 53.1 × and 67.7 ×, respectively, all while maintaining high visual quality with less than a 1.0 dB reduction in peak signal-to-noise ratio.

Publisher

Association for Computing Machinery (ACM)

Reference79 articles.

1. GARNET: A detailed on-chip network model inside a full-system simulator

2. Agisoft. 2024. Agisoft Metashape. https://www.agisoft.com/.

3. Apple. 2021. Apple A15 Die Shot and Annotation - IP Block Area Analysis. https://www.semianalysis.com/p/apple-a15-die-shot-and-annotation

4. Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. 2019. Inverse path tracing for joint material and lighting estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2447–2456.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3