Incremental Real-Time Personalization in Human Activity Recognition Using Domain Adaptive Batch Normalization

Author:

Mazankiewicz Alan1,Böhm Klemens1,Berges Mario2

Affiliation:

1. Karlsruhe Institute of Technology

2. Carnegie Mellon University

Abstract

Human Activity Recognition (HAR) from devices like smartphone accelerometers is a fundamental problem in ubiquitous computing. Machine learning based recognition models often perform poorly when applied to new users that were not part of the training data. Previous work has addressed this challenge by personalizing general recognition models to the unique motion pattern of a new user in a static batch setting. They require target user data to be available upfront. The more challenging online setting has received less attention. No samples from the target user are available in advance, but they arrive sequentially. Additionally, the motion pattern of users may change over time. Thus, adapting to new and forgetting old information must be traded off. Finally, the target user should not have to do any work to use the recognition system by, say, labeling any activities. Our work addresses all of these challenges by proposing an unsupervised online domain adaptation algorithm. Both classification and personalization happen continuously and incrementally in real time. Our solution works by aligning the feature distributions of all subjects, be they sources or the target, in hidden neural network layers. To this end, we normalize the input of a layer with user-specific mean and variance statistics. During training, these statistics are computed over user-specific batches. In the online phase, they are estimated incrementally for any new target user.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference49 articles.

1. Adaptive mobile activity recognition system with evolving data streams

2. Window Size Impact in Human Activity Recognition

3. Shai Ben-David John Blitzer Koby Crammer and Fernando Pereira. 2007. Analysis of representations for domain adaptation. In Advances in neural information processing systems. 137--144. Shai Ben-David John Blitzer Koby Crammer and Fernando Pereira. 2007. Analysis of representations for domain adaptation. In Advances in neural information processing systems. 137--144.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collecting Self-reported Physical Activity and Posture Data Using Audio-based Ecological Momentary Assessment;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-08-22

2. A Washing Machine is All You Need? On the Feasibility of Machine Data for Self-Supervised Human Activity Recognition;2024 International Conference on Activity and Behavior Computing (ABC);2024-05-29

3. CrossHAR: Generalizing Cross-dataset Human Activity Recognition via Hierarchical Self-Supervised Pretraining;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

4. Transfer learning and its extensive appositeness in human activity recognition: A survey;Expert Systems with Applications;2024-04

5. exHAR;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3