exHAR

Author:

Kianpisheh Mohammad1ORCID,Mariakakis Alex1ORCID,Truong Khai N.1ORCID

Affiliation:

1. University of Toronto, Toronto, ON, Canada

Abstract

Human activity recognition (HAR) is crucial for ubiquitous computing systems. While HAR systems are able to recognize a predefined set of activities established during the development process, they often fail to handle users' unique ways of completing these activities and changes in their behavior over time, as well as different activities. Knowledge-based HAR models have been proposed to help individuals create new activity definitions based on common-sense rules, but little research has been done to understand how users approach this task. To investigate this process, we developed and studied how people interact with an explainable knowledge-based HAR development tool called exHAR. Our tool empowers users to define their activities as a set of factual propositions. Users can debug these definitions by soliciting explanations for model predictions (why and why-not) and candidate corrections for faulty predictions (what-if and how-to). After conducting a study to evaluate the effectiveness of exHAR in helping users design accurate HAR systems, we conducted a think-aloud study to better understand people's approach to debugging and personalizing HAR systems and the challenges they may encounter. Our findings revealed why some participants had inaccurate mental models of knowledge-based HAR systems and inefficient approaches to the debugging process.

Publisher

Association for Computing Machinery (ACM)

Reference97 articles.

1. Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215. Santiago, Chile, 487--499.

2. Joint Discovery of Object States and Manipulation Actions

3. Personalized Models in Human Activity Recognition using Deep Learning

4. DeXAR

5. MAGIC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3