In-memory Databases

Author:

Tan Kian-Lee1,Cai Qingchao1,Ooi Beng Chin1,Wong Weng-Fai1,Yao Chang1,Zhang Hao1

Affiliation:

1. National University of Singapore

Abstract

The increase in the capacity of main memory coupled with the decrease in cost has fueled research in and development of in-memory databases. In recent years, the emergence of new hardware has further given rise to new challenges which have attracted a lot of attention from the research community. In particular, it is widely accepted that hardware solutions can provide promising alternatives for realizing the full potential of in-memory systems. Here, we argue that naive adoption of hardware solutions does not guarantee superior performance over software solutions, and identify problems in such hardware solutions that limit their performance. We also highlight the primary challenges faced by in-memory databases, and summarize their potential solutions, from both software and hardware perspectives

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MM-DIRECT;The VLDB Journal;2024-03-27

2. Main Memory Database Recovery Strategies;Companion of the 2023 International Conference on Management of Data;2023-06-04

3. The Metaverse Data Deluge: What Can We Do About It?;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Databases fit for blockchain technology: A complete overview;Blockchain: Research and Applications;2023-03

5. Efficient Checkpoint under Unstable Power Supplies on NVM based Devices;2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3